辐射参数
1.Li, A., Shi, C., Yin, S., Li, N., Letu, H., and Shi, G., 2024. Variation of surface solar radiation components from 2016 to 2020 in China: Perspective from geostationary satellite observation with a high spatiotemporal resolution. Science of The Total Environment, 954, 176264. (DOI: 10.1016/j.scitotenv.2024.176264).
2.Zhang, T., Letu, H., Dai, T., Shi, C., Lei, Y., Peng, Y., Lin, Y., Chen, L., Shi, J., Tian, W., and Shi, G., 2024. Estimating hourly surface shortwave radiation over northeast of the Tibetan Plateau by assimilating Himawari-8 cloud optical thickness. Geoscience Letters, 11, 1. (DOI: 10.1186/s40562-023-00312-8).
3.Chen, J., Shi, C., Zhao, B., Yin, S., Tang, C., and Letu, H., 2024. Assessment of Ocean Color Products From the New Generation Himawari-8 AHI Geostationary Satellite and Its Application in the Calculation of the Photosynthetically Active Radiation. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-13. (DOI: 10.1109/TGRS.2024.3494797).
4.Letu, H., Ma R., T.Y. Nakajima, C. Shi, M. Hashimoto, T.M. Nagao, A.J. Baran, T. Nakajima, J. Xu, T.X. Wang, L. et al., 2023. Surface solar radiation compositions observed from Himawari-8/-9 and Fengyun-4 series. Bulletin of the American Meteorological Society. (DOI: 10.1175/BAMS-D-22-0154.1).
5.Shao, J., Letu, H., Ri, X., Tana, G., Wang, T., and Shang, H., 2023. Estimation of Surface Downward Longwave Radiation and Cloud Base Height Based on Infrared Multichannel Data of Himawari-8. Atmosphere, 14(3), 493. (DOI: 10.3390/atmos14030493).
6.马润, 胡斯勒图., 2023. CARE产品:云微物理和短波辐射强迫算法及应用. 遥感学报 (DOI: 10.11834/jrs.20232450)
7.Letu, H., Nakajima, T.Y., Wang, T., Shang, H., Ma, R., Yang, K., Baran, A.J., Riedi, J., Ishimoto, H., Yoshida, M., Shi, C., Khatri, P., Du, Y., Chen, L., Shi, J., 2022. A new benchmark for surface radiation products over the East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite. Bulletin of the American Meteorological Society, 1–40. (DOI: 10.1175/BAMS-D-20-0148.1).
8.Letu, H., Yang, K., Nakajima, T.Y., Ishimoto, H., Nagao, T.M., Riedi, J., Baran, A.J., Ma, R., Wang, T., Shang, H., Khatri, P., Chen, L., Shi, C., and Shi, J., 2020. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment, 239, 111583. (DOI: 10.1016/j.rse.2019.111583).
9.Ma, R., Letu, H., Yang, K., Wang, T.X., Shi, C., Xu, j., Shi, J.C., Shi, C., and Chen, L.F., 2020. Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 1-13. (DOI: 10.1109/TGRS.2019.2963262).
10.Wang, T., Shi, J., Ma, Y., Letu, H., and Li, X., 2020. All-sky longwave downward radiation from satellite measurements: General parameterizations based on LST, column water vapor and cloud top temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 52-60. (DOI: 10.1016/j.isprsjprs.2020.01.011).
11.Wang, T., Shi, J., Ma, Y., Husi, L., Comyn‐Platt, E., Ji, D., and Xiong, C. ,2019. Recovering land surface temperature under cloudy skies considering the solar‐cloud‐satellite geometry: Application to MODIS and Landsat‐8 data. Journal of Geophysical Research: Atmospheres, 124(6), 3401-3416. (DOI: 10.1029/2018JD028976).
1.An, N., Shang, H., Lesi, W., Ri, X., Shi, C., Tana, G., Bao, Y., Zheng, Z., Xu, N., Chen, L., Zhang, P., Ye, L., and Letu, H., 2023. A Cloud Detection Algorithm for Early Morning Observations from the FY-3E Satellite, IEEE Transactions on Geoscience and Remote Sensing. (DOI: 10.1109/TGRS.2023.3304985).
2.Wang, T., Shi, J., Letu, H., Ma, Y., Li, X., and Zheng, Y., 2019. Detection and removal of clouds and associated shadows in satellite imagery based on simulated radiance fields. Journal of Geophysical Research: Atmospheres, 124(13), 7207-7225. (DOI: 10.1029/2018JD029960).
3.Shang, H., Chen, L., Letu, H., Zhao, M., Li, S., and Bao, S., 2017. Development of a daytime cloud and haze detection algorithm for Himawari‐8 satellite measurements over central and eastern China. Journal of Geophysical Research: Atmospheres, 122(6), 3528-3543. (DOI: 10.1002/2016JD025659).
4.Letu, H., T. M. Nagao, T. Y. Nakajima, and Y. Matsumae, 2014. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera. Applied optics, 53(31), 7523-7533. (DOI: 10.1364/AO.53.007523).
云分类和云相态
1.Bao, F., Letu, H., Shang, H., Ri, X., Chen, D., Yao, T., Wei, L., Tang, C., Yin, S., Ji, D., Lei, Y., Shi, C., Peng, Y., and Shi, J., 2024. Advancing cloud classification over the Tibetan Plateau: A new algorithm reveals seasonal and diurnal variations. Geophysical Research Letters, 51, e2024GL109590. (DOI: 10.1029/2024GL109590).
2.Wang, Z., Letu, H., Shang, H., and Bugliaro, L., 2024. Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations. Atmospheric Chemistry and Physics, 24(13), 7559-7574. (DOI: 10.5194/acp-24-7559-2024).
3.Shang, H., Letu, H., Xu, R., Wei, L., Wu, L., Shao, J., Nagao, T. M., Nakajima, T. Y., Riedi, J. and Chen, L., 2024. A hybrid cloud detection and cloud phase classification algorithm using classic threshold-based tests and extra randomized tree model. Remote Sensing of Environment, 302, 113957. (DOI: 10.1016/j.rse.2023.113957).
云微物理特性
1.Tana, G., Ri, X., Shi, C., Ma, R., Letu, H., Xu, J., and Shi, J. 2023. Retrieval of cloud microphysical properties from Himawari-8/AHI infrared channels and its application in surface shortwave downward radiation estimation in the sun glint region. Remote Sensing of Environment, 290, 113548. (DOI: 10.1016/j.rse.2023.113548)
2.Li, M., Letu, H., Peng, Y., Ishimoto, H., Lin, Y., Nakajima, T. Y., ... and Shi, J. 2022. Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations. Atmospheric Chemistry and Physics, 22(7), 4809-4825. (DOI: 10.5194/acp-22-4809-2022).
3.Wang, Z., Letu, H., Shang, H., Zhao, C., Li, J., and Ma, R. 2019. A Supercooled Water Cloud Detection Algorithm Using Himawari‐8 Satellite Measurements. Journal of Geophysical Research: Atmospheres, 124(5), 2724-2738. (DOI: 10.1029/2018JD029784).
4.Letu, H., T. M. Nagao, T. Y. Nakajima, J. Riedi, H. Ishimoto, A. J. Baran, Shang, H., M. Sekiguchi, and M. Kikuchi, 2019. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3229-3239. (DOI: 10.1109/TGRS.2018.2882803).
5.Letu, H., H. Ishimoto, J. Riedi, T. Y. Nakajima, L. C.-Labonnote, A. J. Baran, T. M. Nagao, and M. Sekiguchi, 2016. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmospheric Chemistry and Physics, 16(18), 12287-12303. (DOI: 10.5194/acp-16-12287-2016).
6.Letu, H., Nakajima, T. Y., and Matsui, T. N., 2012. Development of an ice crystal scattering database for the global change observation mission/second generation global imager satellite mission: investigating the refractive index grid system and potential retrieval error. Applied optics, 51(25), 6172-6178. (DOI: 10.1364/ao.51.006172).
云顶参数
1.Wang, W., Letu, H., Shang, H., Xu, J., Yan, H., Gao, L., Yu, C., Gu, J., Tao, J., Xu, N., Chen, L., and Chen, L., 2024. A novel physics-based cloud retrieval algorithm based on neural networks (CRANN) from hyperspectral measurements in the O2-O2 band. Remote Sensing of Environment, 311, 114267. (DOI: 10.1016/j.rse.2024.114267).
2.Wang, W., Shi, C., Shang, H., Yin, S., Xu, J., and Xu, N., 2024. Development of an Algorithm for the Simultaneous Retrieval of Cloud-Top Height and Cloud Optical Thickness Combining Radiative Transfer and Multisource Satellite Information From O₄ Hyperspectral Measurements. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-11. (DOI: 10.1109/TGRS.2024.3385030).
3.Wei, L., Shang, H., Xu, J., Shi, C., Tana, G., Chao, K., Bao, S., Chen, L., and Letu, H., 2024. Cloud Top Pressure Retrieval Using Polarized and Oxygen A-band Measurements from GF5 and PARASOL Satellites. Advances in Atmospheric Sciences, 41, 680–700. (DOI: 10.1007/s00376-023-2382-5).
4.Xu, R. Tana, G., Shi, C., Nakajima, T.Y., Shi, J., Zhao, J., Xu, J., Letu, H., 2022. Cloud, Atmospheric Radiation and Renewal Energy Application (CARE) Version 1.0 Cloud Top Property Product From Himawari-8/AHI: Algorithm Development and Preliminary Validation. , IEEE Transactions on Geoscience and Remote Sensing, 60, 1–11. (DOI: 10.1109/TGRS.2022.3172228).
5.Nakajima, T. Y., Ishida, H., Nagao, T. M., Hori, M., Letu, H., Higuchi, R., and Yamazaki, A., 2019. Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products.Progress in Earth and Planetary Science, 6(1), 52. (DOI: 10.1186/s40645-019-0295-9).
气溶胶
1.Shi, C., Tang, C., Xu, J., Yin, S., Rao, L., and Letu, H., 2024. Remote Sensing of Tropospheric Aerosol Optical Depth From Multispectral Monodirectional Space-Based Observations. Reference Module in Earth Systems and Environmental Sciences. (DOI: 10.1016/B978-0-443-13220-9.00026-3).
2.Chen, Y., Fan, M., Li, M., Li, Z., Tao, J., Wang, Z., and Chen, L., 2022. Himawari-8/AHI Aerosol Optical Depth Detection Based on Machine Learning Algorithm. Remote Sensing, 14(13), 2967. (DOI: 10.3390/rs14132967).
3.Shi, C., M. Hashimoto, K. Shiomi, and T. Nakajima, 2021. Development of an Algorithm to Retrieve Aerosol Optical Properties Over Water Using an Artificial Neural Network Radiative Transfer Scheme: First Result From GOSAT-2/CAI-2. IEEE Transactions on Geoscience and Remote Sensing, 59, 9861-9872. (DOI: 10.1109/TGRS.2020.3038892).
4.Shi, C., M. Hashimoto, and T. Nakajima, 2019. Remote sensing of aerosol properties from multi-wavelength and multi-pixel information over the ocean. Atmospheric Chemistry and Physics, 19, 2461-2475. (DOI: 10.5194/acp-19-2461-2019).
水汽和降水
1.Sun, Q., Ji, D., Letu, H., Ni, X., Zhang, H., Wang, Y., Li, B., and Shi, J., 2024. A method for estimating high spatial resolution total precipitable water in all-weather condition by fusing satellite near-infrared and microwave observations. Remote Sensing of Environment, 302, 113952. (DOI: 10.1016/j.rse.2023.113952).
2.Chen, X., Letu, H., Shang, H., Ri, X., Tang, C., Ji, D., Shi, C., and Teng, Y., 2024. Rainfall Area Identification Algorithm Based on Himawari-8 Satellite Data and Analysis of its Spatiotemporal Characteristics. Remote Sensing, 16(5):747. (DOI: 10.3390/rs16050747).
3.Ji, D., Shi, J., Xiong, C., Wang, T., and Zhang, Y., 2017. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing. Remote Sensing of Environment, 191, 313-327. (DOI: 10.1016/j.rse.2017.01.028).
辐射传输
1.Shi, C., M. Hashimoto, K. Shiomi, and T. Nakajima, 2021. Development of an Algorithm to Retrieve Aerosol Optical Properties Over Water Using an Artificial Neural Network Radiative Transfer Scheme: First Result From GOSAT-2/CAI-2. IEEE Transactions on Geoscience and Remote Sensing, 59, 9861-9872. (DOI: 10.1109/TGRS.2020.3038892).
2.Ma, R., Letu, H., Yang, K., Wang, T.X., Shi, C., Xu, j., Shi, J.C., Shi, C., and Chen, L.F., 2020. Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 1-13. (DOI: 10.1109/TGRS.2019.2963262).
3.Letu, H., Nakajima, T. Y., and Matsui, T. N., 2012. Development of an ice crystal scattering database for the global change observation mission/second generation global imager satellite mission: investigating the refractive index grid system and potential retrieval error. Applied optics, 51(25), 6172-6178. (DOI: 10.1364/AO.51.006172).
4.Nakajima, T., & Tanaka, M. (1986). Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 35, 13-21. (DOI: 10.1016/0022-4073(86)90088-9).